232 SAUGATUCK RIVER BASIN ## 01208990 SAUGATUCK RIVER NEAR REDDING, CT--Continued ## WATER-QUALITY RECORDS PERIOD of RECORD.--Water years, 1964, 1966, June 1968 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | FECAL
COLI-
FORM,
MFC MF,
WATER
(COL/
100 ML)
(31616) | ENTERO-
COCCI,
MEI MF,
WATER
(COL/
100 ML)
(90909) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |------------------|--|--|---|--|--|--|--|--|---|--|--|---|--| | OCT
19 | 1310 | 3.8 | 246 | 7.3 | 16.0 | 10.5 | .51 | 10.8 | 96 | 4k | 24 | 99 | 25.9 | | JAN
29 | 1455 | 16 | 232 | 7.6 | 18.0 | 4.0 | .51 | 13.9 | 108 | 5k | 9k | 79 | 20.6 | | APR
30 | 1320 | 62 | 209 | 7.4 | 12.0 | 10.5 | 2.0 | 11.2 | 102 | 204 | 43 | 69 | 18.3 | | JUL
30 | 1410 | 5.4 | 248 | 8.0 | 32.0 | 25.0 | 1.2 | 8.7 | 104 | 32 | 116 | 98 | 26.2 | | Date | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | AT 180 | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
(00500) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | OCT
19
JAN | 8.43 | 10.7 | 2.57 | 0 | 98 | 81 | 9.1 | 22.7 | <.1 | 10.5 | 144 | 150 | <.008 | | 29 | 6.65 | 11.9 | 1.87 | 0 | 73 | 61 | 11.1 | 23.2 | <.1 | 9.40 | 132 | 128 | <.008 | | APR
30 | 5.73 | 12.0 | 1.55 | 0 | 64 | 53 | 9.0 | 24.0 | <.1 | 6.09 | 124 | 133 | <.008 | | JUL
30 | 7.98 | 10.2 | 1.68 | 0 | 95 | 78 | 7.7 | 19.3 | <.1 | 7.35 | 144 | 141 | <.008 | | Date | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-PHORUS TOTAL (MG/L AS P) (00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | | OCT
19
JAN | E.03 | <.04 | .28 | .20 | | .009 | .009 | <.02 | 3 | E.03 | 18 | <.06 | <.04 | | 29
APR | .18 | <.04 | .18 | .18 | .36 | .011 | .005 | <.02 | 5 | .07 | 16 | <.06 | <.04 | | 30
JUL | .05 | <.04 | .37 | .26 | .42 | .022 | .009 | <.02 | 12 | .17 | 15 | <.06 | <.04 | | 30 | .15 | <.04 | .29 | .25 | .44 | .026 | .019 | E.01 | 5 | E.04 | 18 | <.06 | <.04 | | Date | CHR
MIU
DIS
SOL
(UG
AS
(010 | M, COBA
- DIS
VED SOLV
-/L (UG
CR) AS | ED SOL
F/L (UG
CO) AS | VED SOI
L/L (UG
CU) AS | S- DI
VED SOL
G/L (UG
FE) AS | AD, NES
SS- DI
AVED SOI
S/L (UC
PB) AS | SE, DE
SS- D
LVED SO
S/L (U
MN) AS | G/L (UG | S- DI
LVED SOL
S/L (UG
NI) AS | S- DI
VED SOL
J/L (UG
AG) AS | S- DI
LVED SOL
G/L (UG
ZN) AS | RAL CARE S- ORGA VED TOT (MG U) AS | ANIC
CAL
G/L
C) | | OCT
19
JAN | <. | 8 .0 | 8 .6 | 32 | 2 <.0 | 08 5. | 4 | .2 .6 | 50 <1 | . <1 | 3 | 0 5. | . 5 | | 29 | <. | 8 .0 | 6 .5 | 98 | .0 | 18 9. | 9 E | .2 .2 | 21 <1 | . <1 | | 1 3. | . 6 | | APR
30 | <. | 8 .0 | 8 .7 | 92 | 2 .0 |)8 11. | 1 E | .2 .3 | 30 <1 | . 4 | .1 | 4 6. | . 3 | | JUL
30 | <. | 8 .0 | 7 .6 | 66 | E.0 | 13. | 1 | .3 .4 | 13 <1 | . 2 | 2 .3 | 4 4. | . 3 | Value qualifier codes used in this report: $k \ \text{-- Counts outside acceptable range} \\$ ## **Science Challenge** | From how many States does the Mississippi River system drain? | | |---|--| | | | | Find more earth science information on our website at http://www.usgs.gov | | | | | | | | | | | | | | | lississippi River system drains water from 31 states and is the source of 23 perface public surface-water supply for the United States. | |